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Abstract. We study how a magnetic bead bounces onto a horizontal diamagnetic conducting plane. The
bead, falling down by gravity from a certain height, produces an Eddy current that creates a repelling force.
For low velocities the bead is trapped by the surface, for intermediate ones it escapes. In such a case the
induced current changes its sign, and so does the force. The balance between diamagnetic and viscoelastic
interactions determines the bouncing dynamics. We find experimentally the restitution coefficient as a
function of the impact speed of the bead and develop, taking into account simple energetic considerations,
a model able to reproduce our findings.

1 Introduction

During the transport and manipulation of granular ma-
terials, as well as in the study of dust conglomerates in
planetary sciences, knowledge about the interaction forces
between two or more particles is crucial to understand the
dynamics of the involved processes [1]. Moreover, in order
to perform efficient Molecular Dynamics Simulations we
need to know how these interaction forces change with the
impact velocity [2]. The coefficient of restitution (hence-
forth called simply e, and defined as the ratio of two veloc-
ities: after and before the impact) is a parameter of great
relevance which gives a measure of the energy loss during
the collision.

More than one hundred years ago H. Hertz perceived
that the force acting during the contact between two sphe-
res is repulsive and due to elastic deformation [3]. There-
after, many authors have proposed different theoretical
models to consider not only repulsion but adhesion [4–7],
viscoelastic interactions [1, 8], coagulation [9], the influ-
ence of the duration of the interaction on the velocity
dependence of the restitution coefficient [10], or high in-
elastic interactions [11], among several others. Recently, in
refs. [12,13] the quasi-static approximation of viscoelastic-
ity of ref. [8] has been extended in a rigorous mathematical
framework to consider situations in which this approxima-
tion is not valid, and applied it to the interaction of bod-
ies of different shapes (considered convex) and of different
materials.

The aim of the present article is to report an exper-
iment dealing with a different type of situation: a soft
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collision mediated by a diamagnetic force. A magnetic
bead is released, from a given height, onto a diamagnetic
plane. As the bead approaches the plane an Eddy current
forms in it. The induced current produces a magnetic field
that opposes the entrance of the bead’s field. If the bead
bounces (because for some conditions it is trapped) the
Eddy current changes in sign and now opposes the bead’s
separation. Altogether, energy is dissipated not only by
the hard-wall interaction where deformation occurs, but
also by the magnetic interaction between the bead and
the plane: Eddy currents dissipate energy by Joule’s ef-
fect. A peculiar behavior is observed: first e is zero for
small velocities, then it increases for moderate velocities,
saturates and finally decreases for higher velocities. We
carry out experiments with demagnetized beads to com-
pare both coefficients and draw some conclusions.

The paper is organized as follows: sect. 2 is devoted
to review the experimental details and show our results,
sect. 3 develops theoretical estimations for the coefficient
of restitution (with two appendices at the end), sect. 4
presents the discussion and finally, sect. 5 gives the con-
clusions.

2 Experiments and results

2.1 Experimental setup and details

A group of spherical magnets (SupermagnetM, NdFeB,
covered with a hard epoxy layer) were subjected to ther-
mal treatment at a temperature slightly above the Curie
temperature (400 ◦C). Regulating the time in the oven,
different magnetizations were obtained. We characterized
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the magnetizations by the maximum surface magnetic
field, measured with a Gaussmeter (Lake Shore 410). De-
magnetization times were chosen to obtain surface fields
ranging from 0 to 12 kG. The procedure is similar to that
reported in [14].

In the first experiment we tested the integrity of the
beads. In other words, we wanted to know if the beads
submitted to thermal treatment have changed or not their
mechanical properties. For such purpose, control experi-
ments on wood and Plexiglas surfaces were performed,
comparing the coefficient of restitution of beads with and
without thermal treatment. Only those beads having an
average econtrol statistically equal to the one for untreated
beads were used in the following experiments.

The second experiment is dedicated to determine e
for the beads impacting onto a horizontal copper sur-
face. From a given height h a bead of (5.30 ± 0.02)mm
of diameter, and a mass of (0.495 ± 0.004)g falls perpen-
dicularly to the surface, while a CCD fast speed camera
records its trajectory. Different heights give different ve-
locities, from 0.10 to 5.50m/s. The copper surface was
mechanically polished (polishing tracks are visible only
under optical magnification). We used a magnetic mecha-
nism that releases the beads with their magnetic moment
approximately parallel to their trajectory. Control exper-
iments with marked beads confirmed that the beads fall
almost with no rotation, so the impacts are mostly with
the dipole perpendicular to the plane. Below we discuss
the effect provoked by the deviations from such perpen-
dicularity on the magnetic force strength. Care was taken
to change periodically the beads and the point of impact
in the plane, to avoid indentation and the deformation of
the epoxy layer (which is around 200µm), particularly for
the higher velocities.

Films were digitized with the free software ImageJ,
obtaining position vs. time data. The data are used to de-
termine the speed of the bead by numeric derivation, and
finally the coefficient of restitution is calculated as va/vb,
where the subscripts b and a mean before and after the
impact (in what follows we will keep this nomenclature).
As the magnetic interaction begins before the bead and
the plane get into contact, and ends after their separa-
tion, it must be selected a point of beginning and a point
of ending of the interaction. We choose, for reasons that
will be discussed below, the points of imminent contact
and separation of the beads. In order to obtain good res-
olution recording rates from 5000 to 15000 fps are used.
From three to ten experiments per height and per magne-
tization were performed and their results averaged.

2.2 Experimental results

Figure 1 shows the experimental velocity dependence of e
for a fully magnetized bead (12 kG, circles) and a totally
demagnetized one (0 kG, squares).

Let us discuss first the results for magnetized beads.
In the zone of low velocities the coefficient of restitution
is zero. This effect is the first sign that a diamagnetic in-
teraction dominates the collision: the bead does not have

Fig. 1. (Color online) Velocity dependence of the coefficient of
restitution for magnetized and fully demagnetized beads. The
dashed line is a fit to eq. (10) while the continuous one is a fit
to eq. (11), see text.

enough kinetic energy to escape from the plane because
is trapped by a diamagnetic force that changes from re-
pulsive to attractive (attractive once the bead stops and
tries to bounce). Here, it is convenient to define the limit
velocity vl as the highest incoming velocity vb for which
the bead still has a bouncing speed va = 0. Furthermore,
note that this trapping effect is not related to adhesion or
surface energy [4] as we will discuss below.

The value of vl is around 0.32m/s. For values of vb

above this threshold, the value of e increases until, around
1.50m/s, levels off. It is easy to see a decrement of e for
vb > 2.00m/s. Later in the paper we will explain the
meaning of the dashed line that fits the data for all veloc-
ities.

We consider now the experiments using demagnetized
beads. As fig. 1 shows, e monotonically decreases in all the
velocity interval considered in the experiments. Again, we
will later explain the nature of the continuous line fitting
the data, although it is worth to advance that demagne-
tized beads rebound in such a way that viscoelastic inter-
actions, at least for velocities up to 5.50m/s, now mediate
the collision.

The most striking feature of this figure is that, unex-
pectedly, above 2.00m/s both data merge. In other words,
the coefficients of restitution are the same.

Before we try to lay down a model to understand the
nature of the above results, we show in fig. 2 the coefficient
of restitution for beads with different magnetizations. The
same trend is seen regardless the value of the bead magne-
tization: no rebound at low velocities, then an increment
of e, a leveling of its values and a final decrease, similar to
that of the demagnetized bead. In the inset of the figure
the low-velocity part of the fittings to the experimental
data is shown, which will be discussed in the next sec-
tion. The continuous monotonically decreasing line rep-
resents the viscoelastic dependence of the demagnetized
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Fig. 2. Velocity dependence of the coefficient of restitution
for partially demagnetized beads. In each case the solid line
represents a fit of the model. The decreasing curve (green)
corresponds to the demagnetized (0 kG) beads as in fig. 1. The
inset shows the low velocity part of the fits.

Fig. 3. Velocity dependence of the experimental coefficient of
restitution for secondary rebounds of partially demagnetized
beads of 5 kG (circles). The continuous line is a representation
of eq. (10) for those beads, and the dashed line is the viscoelas-
tic dependence, eq. (11).

beads seen in fig. 1. It is possible to note that also for the
partially magnetized beads, this behavior is dominant for
velocities above 2.5m/s.

The method used to obtain the limit velocity vl is to
film not only the first bounce, but also several secondary
rebounds, as is shown in fig. 3. This, of course, would give
rebounds with a variety of values of e, among which, we
choose only those with va = 0. We will discuss further on
this subject.

Fig. 4. The limit velocity vl as a function of the square of the
bead magnetization. The continuous line is the fit of a linear
model.

The values of vl determined as explained are plotted
in fig. 4 as a function of the square of the magnetization of
the bead m2. A clear linear vl(m) dependence is observed.

3 Model

3.1 The magnetic force

The system under consideration is depicted in fig. 5. A
magnetic bead, with its dipolar moment m pointing down-
ward, falls under the action of gravity g along the Z axis
of a reference frame and impinges on a conducting dia-
magnetic disk of radius ρ0 containing the X and Y axis.
The magnetic moment is perpendicular to the surface of
the disk.

As the bead approaches the plane, it induces an Eddy
current which in turn produces an opposing magnetic mo-
ment mind (Lenz’s law). Between both moments there is
a force that can be calculated with the following equation
(the first term for the dipole current model, the second for
the magnetic charge one) [15]:

F = ∇(m · Bind) = (m ·∇)Bind. (1)

where Bind is the magnetic induction of the field of the
magnetic bead.

Independently of the model used the force between the
magnetic moments is [16]

F =
µ0mmind

4πd4

{
d̂(m̂ind · m̂) + m̂ind(d̂ · m̂)

+ m̂(d̂ · m̂ind) − 5d̂(d̂ · m̂ind)(d̂ · m̂)
}
, (2)

where mind is the magnitude of the induced dipole mo-
ment due to the Eddy currents in the plane and d is the
distance between the center of the bead and the center of
the currents associated with the induced dipole moment.
The hat represents, as usual, the unitary vector symbol.
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Fig. 5. (Color online) Schematic representation of the experi-
mental system, used in the development of the model.

To calculate mind we have to determine the magnetic
induction of the bead in the plane:

B =
µ0

4πr3
(3r̂r̂ · m − m), (3)

where m = −mk̂ and r is the distance from the center of
the magnetic bead to a point in the plane (see fig. 5).

The induced magnetic dipole moment is given by (see
appendix A for details of calculation):

mind =
µ0m

4
κf(ρ0, z)z′k̂, (4)

where
f(ρ0, z) =

3zρ2
0 + 2z3

(ρ2
0 + z2)3/2

− 2, (5)

and z′ is the magnitude of the velocity of the bead.
f(ρ0, z) is a function that approaches linearly to −2

as z → 0. κ is a parameter of the material of the plane,
(κ = σCuξ is the product of the conductivity of the mate-
rial, copper in our case, and the penetration length of the
induced current). Introducing eq. (4) in eq. (2), we obtain
the magnitude of the force acting on the bead when the
dipole moment is oriented vertically:

F =
µ2

0m
2

8πz4
κf(ρ0, z)z′k̂. (6)

It is easy to probe that f1(ρ0, z) = f(ρ0, z)z−4 has a
pronounced dependence with z: f1 ∼ z−4. Since f(ρ0, z)
is always negative (see appendix A) and when the bead
approaches the plane z′ < 0, F ‖ k̂ agreeing with the
prediction derived from Lenz’s law. After bouncing, z′ >
0, f(ρ0, z) keeps its sign, so now F ‖ −k̂, meaning that the
force is attractive as is also predicted by Lenz’s law. Of
curse, f1 is not capable to reproduce the behavior of the
interaction force F for distances smaller than the bead’s
radius, where a monopole like behavior (F ∼ z−2) has
been reported [17]. In any case (which has importance
in what we do below) f1(ρ0, z) is a monotonic increasing
function of z. If it were not so, an equilibrium point would
be reached, contradicting the physics of the problem.

3.2 Coefficient of restitution

In order to find an expression for the coefficient of resti-
tution, let us first inquire about the forces involved in the
interaction of the magnetic bead and the diamagnetic con-
ducting plane. An important interaction, due both to its
range and strength is, of course, the magnetic one. This
interaction is highly non linear, due to its dependence on
the distance between the sphere and the plane and on
the velocity. Moreover, as discussed above, this interac-
tion changes its sign after the impact.

Suppose the dipole of the bead remains perpendicu-
lar to the surface, then the magnetic force will increase
as it approaches to the surface, because the velocity aug-
ments and the distance bead-surface reduces (see eq. (6)).
But the increment of the magnetic force tends to slow
the bead, therefore diminishing further increments of the
speed. In addition to this complicated non-linear inter-
action there is another point to consider: the magnetic
force is limited by the magnitude of the intensity of the
induced current, which is ultimately related to the resis-
tivity of the material. This makes this force hard to cal-
culate in detail although we will give below an estimate
of the energy dissipated due to its action. Furthermore,
the problem gets even more entangled when we take into
consideration that, as we mentioned before, there are dif-
ferent interaction regimes for the magnetic force: from z−4

(long-mid distance) to a monopole like interaction at short
distances, smaller than the radius of the bead, with a dis-
tance dependence of the form z−2 [17].

Another important contribution is the elastic term.
The elastic deformations are not permanent, meaning that
when the interaction finishes the interacting bodies re-
cover their original shape. Following ref. [18] the expres-
sion for the Hertzian force is Fel = ρξ3/2, where ρ is de-
termined by the elastic constants and dimension of the
interacting bodies, and ξ is the total deformation of both
surfaces.

Viscous losses appear due to the dissipation of energy
in the bulk of the bodies, related with the change of de-
formation with time. For low velocities (compared with
the speed of sound in the materials) and long collision
times (compared with the characteristic time of the vis-
cous processes), the viscous force can be computed as [18]:
Fvis = 3

2Aρξ′
√

ξ. In this expression A is determined from
the viscous characteristic times and the elastic constants.
As the viscous force increases with velocity, the fingerprint
of its action is a monotonic decrease of the coefficient of
restitution with velocity.

Finally, let us consider the possible influence of the so
called surface adhesion [1,4,18]. This force is provoked by
the molecular interactions between surfaces, and its effect
has been mainly (but not only) studied for small velocities
in soft and optically smooth surfaces. Adhesion becomes
important when the distance of the particle surfaces ap-
proaches to the range of molecular forces [18]. Indeed, in
the classical work of Johnson, Kendall and Roberts [4] au-
thors used rubber and gelatin optically smooth surfaces of
low Young modulus for measuring this force.
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It is important to note, however, that in ref. [19] the
authors measured kinematic coefficients of normal resti-
tution in head-on collisions of two identical small spheres
of acrylic, ceramic or steel at low impact speeds, and ob-
served that adhesion lowers the coefficient of restitution.
They found values of critical velocities (e(vcrit) = 0) close
to 0.02m/s for normal impact between steel spheres. As
noted very recently in ref. [20], the impact at small enough
relative velocities between non-smooth ice particles re-
sults in adhesion, forming aggregates, which is important,
for instance, in the particle size distribution of planetary
disks.

In our experiments we worked at velocities not so
small, been the limit velocities around 0.2m/s, well above
the highest experimental values of critical velocities ob-
tained previously. So the velocity at which va = 0 must
be associated to a different interaction. Indeed, it is rea-
sonable to think that the surface interaction (adhesion)
does not depend on the magnetization of the beads. If this
contribution were important, it must appear in the inter-
action of demagnetized beads with the plane but, as fig. 1
shows, at velocities of 0.1m/s adhesion is not perceptible.
So, we will not consider its effect.

Now that we discussed the interactions to be consid-
ered, instead of solving the differential equation relating
all these forces with the acceleration of the bead, we pro-
ceed with an energetic balance (using the theorem of work
and energy) of the interactions to obtain a quantitative
relation between e and vb. Firstly it is necessary to deter-
mine which are the initial and final points in the move-
ment of the bead, and consider the energy transformations
in the transit from one point to the other.

In order to select the initial and final velocities used
in the calculation of e, let discuss its definition first. In
refs. [1,2], for instance, e is defined as the ratio of the ve-
locities ξ′(tc)/ξ′(0) where ξ(t) is the compression of the in-
teracting surfaces. The interacting time tc is defined in [2]
as the time when the interaction force vanishes. The initial
time is defined as the time “the spheres start contacting”.
It is useful to remember that in ref. [10] a correction is
made, because the real interaction time is smaller than tc
as defined in [2]. When we consider forces that act not
only during the contact (as is the case of the magnetic
force that has, in principle, infinite range) we must do an a
priori selection of the start and the end of the interaction.

The selection of the initial and final points in this kind
of interaction has to be done with a certain degree of arbi-
trariness. Since there are several possibilities we are going
to discuss only three of them:

1. To select a fixed distance sphere-plane, defined as that
at which we can neglect the magnetic force (where the
interaction begins and ends). Though it seems easy to
do, it is far from obvious: as the incoming and outgoing
velocities are different, the forces will be different at
that distance, which means that at a distance where
the force is negligible for the outgoing bead, it is not for
the incoming one. Besides, this distance will depend on
the velocity, provoking its variation between different
experiments.

2. To select a constant value of the force: it takes us to
a similar problem as the previous definition, because
in the point of equal forces the potential energy in the
incoming and outgoing parts of the movement would
be different complicating hence the equations.

3. To consider a fixed distance, for which the forces are
not negligible: this is the one we choose, taking a dis-
tance between the center of gravity of the bead and
the diamagnetic plane equal to the radius of the bead,
where the velocities are easy to determine experimen-
tally.

In our choice, of course, we took into account the fact
that no matter which distance we use, the definition will
be always arbitrary. We make the choice of considering
(as we said above) the initial and final points at the height
where the center of the bead is at a distance from the plane
equal to its radius. For doing this, we analyzed the infor-
mation provided by the digitization of the videos: there is
not an appreciable departure from the free falling until the
bead does not enter in contact with the plane. To check
this we solved numerically the differential equation of the
trajectory for fully magnetized and demagnetized beads,
and did not find differences between both trajectories at
distances between the surfaces of the plane and the bead
as small as 0.1mm. This is related with the fact that the
interaction has a short range, and also that the numerical
coefficient in the equation of the force depends on µ2

0m
2,

that results a small quantity, so only at very short dis-
tances the magnetic force is important for the behavior of
the particle.

With the selection we have made of the initial and fi-
nal points, we will determine the coefficient of restitution.
The kinetic energy of the bead at the initial point will be
partially dissipated by the magnetic (Wmb, the subindex
b indicating before the impact) and viscous (Wvb) interac-
tions, and the rest will be stored as elastic energy (Eelas),
so

1
2
mpv

2
b = Eelas + Wmb + Wvb. (7)

where mp is the mass of the bead, and vb, as we discussed
above, is the velocity of the incoming bead in the point of
imminent contact with the plane.

In the rebound stage, the elastic energy is partially
lost doing work against the magnetic forces (Wma, in this
case, attractive) and the viscous dissipation Wva. The rest
is transformed into kinetic energy, associated with the ve-
locity va in the point where the bead is in tangential con-
tact with the plane:

Eelas = Wma + Wva +
1
2
mpv

2
a. (8)

Substituting (8) in (7) we obtain

1
2
mpv

2
b =

1
2
mpv

2
a + (Wmb + Wma) + (Wvb + Wva). (9)

In appendix B we estimate the energies Wm, Wv, and
obtain the dependence of the coefficient of restitution with
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the initial velocity:

e(vb) = e0eve(vb)
(

1 − vl

vb

)
, (10)

where e0 is a free parameter and eve(vb) is the coefficient of
restitution of a demagnetized bead at the incoming veloc-
ity (associated with the viscous dissipation). The term in
parenthesis in eq. (10) is mainly related with the magnetic
interaction.

Due to the range of velocities used here [10]

eve(vb) = 1 + k1v
1/5
b + k2v

2/5
b + k3v

3/5
b + k4v

4/5
b + . . . .

(11)
As we saw before, eqs. (10) and (11) fit very well our

experimental data.

4 Discussion

Before discussing the experimental results, it is very im-
portant to note that, for the fitting procedure, we first fit
eq. (11) to the data of fig. 1 (non magnetized beads), con-
sidering only the first four coefficients of the expansion,
and obtained the coefficients ki. After that, these coeffi-
cients were used to fit eq. (10) to the data of fig. 1 (fully
magnetized beads), so in this equation the fitting parame-
ters are vl and e0. Note that as vl could be evaluated from
the experiments, e0 is the only free parameter.

The results of the fit of the viscoelastic dependence to
the data gives:

eve(vb) = 1 − 0.98v1/5
b + 2.69v2/5

b − 3.04v3/5
b + 1.02v4/5

b ,
(12)

In the fit shown in fig. 1, we have to use the four terms
of the expansion (eq. (12)) in order to obtain the correct
signs of the coefficients as theoretically predicted in [18].
The fit is good enough to claim that for totally demag-
netized beads the rebound is dominated by viscoelastic
interactions, at least for velocities up to 5.60m/s. Taking
more terms in eq. (11) the result will be more accurate.
For the range of velocities considered here, e decreases as
predicted by this equation.

Of course, this type of interaction must be present also
during the impact of magnetized beads. Indeed, when the
bead arrives with a velocity equal or less than its limit
velocity, it dissipates energy as heat due to the work done
against the magnetic force and its own deformation. This
implies that the maximum attainable coefficient of resti-
tution should be equal to that of the demagnetized bead,
justifying the form of eq. (10).

As the influence of the term in parenthesis in eq. (10)
(associated with magnetic interactions) on the coefficient
of restitution almost saturates (e ≈ 1) for velocities of
around ten times the limit velocity, above this limit the
dominating influence will be that of the viscous dissipa-
tion, that increases with velocity. This explains the behav-
ior observed in fig. 1.

Substituting eq. (12) in eq. (10), we are able to repro-
duce very well the data measured with magnetized beads

plotted in fig. 1 for all the speeds above vl. Not only the
form of the experimental curve (firstly an increase, then
almost constant, finally a slow decrease), but also the val-
ues of vl and the constants of the model are obtained from
the nonlinear fitting procedure. The value of e0 obtained
is 1.238.

The fitting procedure as described above was also ap-
plied to the data registered for partially demagnetized
beads. For these beads all features observed for fully mag-
netized ones are also found (see fig. 2), although the
limit velocity diminishes as the demagnetization increases.
Above 2.00m/s, all the curves follow the same trend
where viscoelastic interactions dominate. This can be seen
comparing with the monotonically decreasing curve cor-
responding to the demagnetized beads. The smaller the
magnetization the faster the viscoelastic interactions dom-
inate. For all these measurements, the average value of the
free parameter e0 is e0 = 1.0 ± 0.2. The values of e0 are
close to one, indicating that the approximations used to
obtain eq. (10) are plausible.

To obtain the value of the limit velocity for each mag-
netization it is necessary to repeat the bouncing exper-
iment several times, which can be done using secondary
rebounds (as in fig. 3). Of course, it is impossible to know
the orientation of the magnetic moment at each rebound
but, if the experiment is repeated many times, there is
a probability that some rebounds occur with the mag-
netic moment pointing to the surface, so the experimental
points would be distributed in an area bounded, from be-
low, by the line given by eq. (10). There is also the possi-
bility that the bead knocks the surface with its magnetic
moment parallel to it. In such a case e will be close to that
of the demagnetized beads, which implies that the distri-
bution of experimental points should be bounded, from
above, by eq. (12). Figure 3 shows the results for beads
with 5 kG, confirming our reasoning.

According to eq. (B.11) e2
ve(vl)vl must vary linearly

with the square of magnetization. Figure 4 shows an ap-
proximate linear dependence of vl with m2. The standard
error of the slope and the intercept is around 10%, which
is very good taking into account all the approximations
used to obtain eq. (B.11), and the fact that the value of
the coefficient of restitution is not considered. In fig. 6 we
plot the dependence of vl and of e2

ve(vl)vl = vl,rect with
m2. The dashed line in this figure is a linear fit, with its
intercept closer to zero, which is the value that should be
expected according to eq. (B.11). The fact that the inter-
cept is not zero could be attributed to two different facts.
Firstly, the smaller is the magnetization, the more impre-
cise is the determination of the limit velocity, due to the
weakness of the magnetic dipolar interaction, and the indi-
rect method of determination. Secondly, it is possible that,
for the smaller velocities, the dependence change it func-
tional form, diminishing faster vl with the magnetization.

Finally, let us discuss the reproducibility of the exper-
imental results. Most of the results shown in figs. 1 and 2
are the average of three repetitions performed under the
same experimental conditions but, for all magnetizations,
control experiments with ten repetitions were performed
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Fig. 6. Dependence of the limit velocity vl (circles) and the
rectified limit velocity vl,rect (squares, see text for definition)
with the square of the magnetization. The lines are linear fits.

at selected dropping heights, in order to test the repro-
ducibility.

In most of cases the reproducibility is so good that
the error bars ∆e are smaller than the size of the symbols
used. Only for the 10 kG beads, in the region of small and
medium velocities the dispersion is such that the error
bars are noticeable larger than the symbol’s size.

An important discussion is the effect that a misalign-
ment from the vertical direction of the magnetic moment
of the falling bead has on the magnitude of the force. To
do this we will refer to the vectorial part of eq. (2), because
the other part does not change whit the change of orienta-
tion. If we compare the norm of this vector calculated for
the magnetic moment pointing downward with the norm
in the case of a misalignment by an angle φ we see that the
values are 2 and (1+3 cos2 φ)1/2 respectively. It is easy to
test that for angles smaller than 10◦ the relative error in
the calculation is less that 6%. So a stochastic variation of
the direction of the magnetic dipole will not affect signif-
icantly the magnetic force (and, of course, will not affect
at all any other interaction present in the system), giving
the same average value of the measured restitution coeffi-
cient. Of course, the higher the dropping point, the easier
an important deviation from the perfect alignment will
occur, but also the less important will be the magnetic
component of the interaction (at velocities above 2m/s
the viscoelastic term dominates the dissipation, see fig. 1)
and again this factor will not influence in an appreciable
amount the coefficient of restitution.

5 Conclusions

Overall, we perform experiments to find the restitution
coefficient of a magnetic bead that bounces onto a dia-
magnetic plane. Our main finding is that for low and mod-
erate impact velocities, the coefficient of restitution is de-
termined mainly by the magnetic interaction. This means

that this interaction strongly dissipates the initial energy.
For higher velocities the magnetic term saturates and the
viscoelastic interaction takes over. A theoretical expres-
sion has been proposed to explain the obtained results.
On the light of our simple model, it seems that magnetic
and viscoelastic terms act separately depending on the
incoming speed.

Our findings could be applied to understand systems
where other interactions are present, like van der Waals
adhesion as studied already in [21]. Also, our results could
be useful in industrial processes where colliding of mag-
netic and diamagnetic surfaces occur, or to design dia-
magnetic dampers. Finally, the interplay of forces here
analyzed could also help to understand the dynamics of
formation or disintegration of aggregates in simulations of
stellar clouds and planet formation.

This work has been partially supported by CONACYT,
México, under Grants 101384 and 220962. AJBL thanks the
Visiting Professor Program of the Secretary of Foreign Rela-
tions, México.

Appendix A. Calculation of the magnetic
force

We will consider a diamagnetic disk with the dipole falling
along its axis as represented in fig. 5. To calculate the
induced dipolar moment we will follow the approach:

1. Calculate the flux surrounded by the thin loop of ra-
dius ρ and width ∆ρ.

2. Determine the induced emf using Faraday’s law.
3. Using Ohm’s law determine the induced current in the

loop.
4. Calculate the induced magnetic moment that is asso-

ciated with the current.
5. Sum the induced moment by all the disk to determine

the total magnetic moment.

To do this, we determine from eq. (3) the magnetic
induction provoked by the falling dipole in the plane in
one instant of time. The value of r is

r = xî + yĵ − z(t)k̂. (A.1)

In what follows we will omit the time dependence of z,
unless it were necessary for the analysis. Then:

B =
µ0m

4π

[
3z

(ρ2 + z2)5/2
(xî + yĵ) +

ρ2 − 2z2

(ρ2 + z2)5/2
k̂

]
.

(A.2)
The magnetic flux inside the ring is

ΦB =
∫ ρ

0
B · dS =

∫ ρ

0
B · k̂2πρ′dρ′, (A.3)

where ρ = (x2 + y2)1/2. Then,

ΦB = −µ0m

2
ρ2

(ρ2 + z2)3/2
. (A.4)
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As the magnetic flux depends on time through z, the
variable flux will create a emf through the ring:

ε = −dΦB

dt
= −3µ0m

2
zρ2

(ρ2 + z2)5/2
z′(t). (A.5)

In this equation the prime indicates time derivative.
This emf provokes the circulation of an induced electric
current in the ring, with intensity:

∆Iind =
ε

∆R
, (A.6)

being ∆R the electric resistance of the ring to the circula-
tion of the current. Considering that it has a penetration
depth ξ in the ring, and terming σCu the conductivity of
copper, we find

∆R =
1

σCu

2πρ

∆ρξ
. (A.7)

then,

∆Iind = −3µ0m

4π
κg(ρ, z)z′(t)∆ρ, (A.8)

being κ = σCuξ and g(ρ, z) = (zρ)/(ρ2 + z2)5/2.
The current circulating by the thin ring induces a mag-

netic moment, equal to

∆mind = −3µ0m

4
κg(ρ, z)z′(t)ρ2∆ρk̂. (A.9)

For calculating the total induced moment in the disk,
we divide it in rings of differential width dρ, and sum over
all of them:

mind = −3µ0m

4
κz′(t)k̂

∫ ρ0

0
g(ρ, z)ρ2dρ, (A.10)

mind =
µ0m

4
κz′(t)k̂

×
[

3ρ2
0z + 2z3

(ρ2
0 + z2)3/2

− 2
]

. (A.11)

This value must be substituted in eq. (2) to obtain
the force acting on the bead. Considering that the dipolar
moment of the bead always points downward, the force
between the magnetic bead and the dipole is, finally,

F =
µ2

0m
2

8πz4
κ

[
3ρ2

0z + 2z3

(ρ2
0 + z2)3/2

− 2
]

z′k̂. (A.12)

The magnitude surrounded by square braces in eq.
(A.12) has only complex roots and is always negative. It
is important for what is discussed in the main text.

Appendix B. Calculation of the coefficient of
restitution

Equation (9) gives the energy balance of the bouncing
process of one bead

1
2
mpv

2
b =

1
2
mpv

2
a + Wma + Wmb + Wve, (B.1)

where we put in one symbol the energy dissipated due to
the viscous losses

Wve = Wvb + Wva. (B.2)

Using eq. (6) we can calculate Wb and Wa

Wb =
∫ r2

r1

F · dr =
∫ zmin

z0

Fdz. (B.3)

Wb = Km2

∫ zmin

z0

f1(ρ0, z)v(z)dz. (B.4)

In this last equation K accounts for the constants in-
volved. z0 is the distance between the center of the bead
and the plane in the point of imminent contact (equal
to the radius of the bead) and zmin is the distance be-
tween the center of the bead and the plane when the bead
stops (z0−zmin is the maximum deformation of the bead).
Though we do not know the functional dependence of v(z),
f1(ρ0, z) is a continuous monotonic increasing function for
z > 0, so applying the theorem of mean value

Wb = Km2v(z∗)
∫ zmin

z0

f1(ρ0, z)dz; z∗ ∈ (zmin, z0),

(B.5)
Wb = Km2v(z∗)I(zmin, z0), (B.6)

where I(zmin, z0) is the value of the integral in eq. (B.5).
This value is impossible to determine without knowing

the exact distance dependence of the force which, as we
stated before, changes with the decrement of the distance.
But though the dependence can change from z−4 to z−2,
the monotony of the dependence remains, and so the va-
lidity of eq. (B.6). It is important to note that in what
follows we do not use the value of I(zmin, z0).

Identically

Wa = Km2v(z∗∗)I(zmin, z0); v(z∗∗) ∈ (zmin, z0).
(B.7)

It is very likely that the velocity of the bead decreases
monotonically from the moment of the impact to the mo-
ment it stops (and increases monotonically in the back-
ward movement). Then it is plausible to consider that the
average velocity in eq. (B.6) is proportional to the veloc-
ity at the beginning of the impact, as well as the average
velocity in eq. (B.7) is proportional to the velocity at the
end of the impact. So we can write

v(z∗)
vb

=
v(z∗∗)

va
= ζ. (B.8)

Then eq. (B.1) may be written as

1
2
mpv

2
b = Kζm2I(zmin, z0)(vb + va) +

1
2
mpv

2
a + Wve.

(B.9)
An estimate of the viscous loses could be obtained in-

troducing the velocity dependent viscoelastic coefficient of
restitution vve(vb)

Wve(vb) =
(
1 − e2

ve(vb)
) 1

2
mpv

2
b . (B.10)
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Substituting (B.10) in (B.9) and considering that the
bead contacts the plane at the limit velocity vb = vl, which
implies va = 0

e2
ve(vl)vl =

2Kζm2I(zmin, z0)
mp

. (B.11)

This equation predicts a linear relation of e2
vevl with

m2. From eq. (B.11) we obtain

Kζm2I(zmin, z0) =
mp

2
e2
ve(vl)vl, (B.12)

so equation (B.9) reduces to

e2
ve(vb)

1
2
mpv

2
b =

1
2
mpv

2
a +

mp

2
e2
ve(vl)vl(vb + va). (B.13)

Dividing by 1
2mpv2

b and substituting e(vb) = va/vb

e2(vb)+ e2
ve(vl)

vl

vb
e(vb)+ e2

ve(vl)
vl

vb
− e2

ve(vb) = 0. (B.14)

Solving for e(vb)

e(vb) = −1
2
e2
ve(vl)

vl

vb

+

√
1
4
e4
ve(vl)

v2
l

v2
b

− e2
ve(vl)

vl

vb
+ e2

ve(vb), (B.15)

where only the positive root is considered because e is a
positive quantity. Considering that the coefficient of resti-
tution of the demagnetized bead is close to one for small
velocities, is possible to obtain

e(vb) = −1
2
e2
ve(vl)

vl

vb
+ eve(vb)

√
1
4

v2
l

v2
b

− vl

vb
+ 1, (B.16)

which finally yields

e(vb) = eve(vb)
(

1 − vl

vb

)
. (B.17)

In order to take into account the approximations as-
sumed in the obtention of eq. (B.17), we introduce a free
parameter to be obtained from the fitting processes

e(vb) = e0eve(vb)
(

1 − vl

vb

)
. (B.18)

This equation predicts that for incoming velocities that
are around ten times larger than the limit velocity, the
coefficient of restitution will mostly depend on the vis-
cous interactions, so we can asume that the term in round
braces in eq. (B.18) is mainly related with the magnetic
interaction.
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